If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+2X-1920=0
a = 1; b = 2; c = -1920;
Δ = b2-4ac
Δ = 22-4·1·(-1920)
Δ = 7684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7684}=\sqrt{4*1921}=\sqrt{4}*\sqrt{1921}=2\sqrt{1921}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1921}}{2*1}=\frac{-2-2\sqrt{1921}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1921}}{2*1}=\frac{-2+2\sqrt{1921}}{2} $
| 2(4w-3)=-2(2+15) | | 3600+x=93000 | | 6500x=93000 | | 6(2y+3)=20 | | 42+22x=28x | | 9y–3=4-(2y+6) | | X=4÷5×x+10 | | 17x=7x+5 | | 4k2+17k+-15=0 | | x+5=5x-2 | | x2+3x+-18=0 | | x/9·15−47=28 | | 9x=5(x+16) | | (x+2)^2-10=(x+3)(x+2)-4 | | 3x-15/2x=6 | | -15x+3=10 | | 3x-157/2x=6 | | 15y-11=9 | | (9x-25)=0 | | x=-4+34-4x | | 9x+(×-7)=(5x+4)-(8-3×) | | 6x²-11x-2=0 | | .84x=1932 | | 19-3x=14+3x= | | 9x/4=-11x/3-5x/6 | | 7x+5=12x-10= | | 5(7-3x)(5x+1)=0 | | 1-4.6v=-0.8-4.1v | | x-0.26x=1110 | | x-0.26=1110 | | 4x2=-12x-7 | | (2x-1)+x=19 |